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Polytope is the general term of the sequence
“point, segment, polygon, polyhedron,. . . ”

Definition

A polytope in Rn is a finite, convex region enclosed by a finite
number of hyperplanes. We denote it by Πn.

Examples n = 0, 1, 2, 3, 4.



Introduction Two dimensions Three dimensions Schläfli symbol Four dimensions Five and more dimensions

Polytope is the general term of the sequence
“point, segment, polygon, polyhedron,. . . ”

Definition

A polytope in Rn is a finite, convex region enclosed by a finite
number of hyperplanes. We denote it by Πn.

Examples n = 0, 1, 2, 3, 4.
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Definition

Regular polytope is a polytope Πn (n ≥ 3) with

1 regular facets

2 regular vertex figures

We define all Π0 and Π1 to be regular. The regularity of Π2 is
understood in the usual sense.

Vertex figure at vertex v is a Πn−1 obtained by joining the
midpoints of adjacent edges incident to v.
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Star-polygons

9 5
2 = 9 7

2 = 9 7
3 =

9 8
3 = 9 9

2 = 9 9
4 =
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Kepler-Poinsot solids

95, 5
2 = 93, 5

2 =

9 5
2 , 5= 9 5

2 , 3=
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Two dimensional case

In 2 dimensions there is an infinite number of regular polytopes
(polygons).

83< 84< 85< 86<

87< 88< 89< 810<
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Necessary condition in 3D

Polyhedron {p, q}
Faces of polyhedron are polygons {p}
Vertex figures are polygons {q}. Note that this means that
exactly q faces meet at each vertex.

(
π − 2π

p

)
q < 2π

1− 2
p

<
2
q

1
2

<
1
p

+
1
q
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Solutions of the inequality

Inequality

Faces are polygons {p}
Exactly q faces meet at each vertex

1
2

<
1
p

+
1
q

Solutions

p = 3 p = 4 p = 5
q = 3, 4, 5 q = 3 q = 3

But do the corresponding polyhedrons really exist?
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{p, q} = {4, 3}

(±1,±1,±1)
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Cube

{p, q} = {4, 3}

(±1,±1,±1)
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{p, q} = {3, 4}

(±1, 0, 0)
(0,±1, 0)
(0, 0,±1)
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Octahedron

{p, q} = {3, 4}

(±1, 0, 0)
(0,±1, 0)
(0, 0,±1)
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{p, q} = {3, 3}
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Tetrahedron

{p, q} = {3, 3}
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Tetrahedron

{p, q} = {3, 3}

(+1,+1,+1)
(+1,−1,−1)
(−1,+1,−1)
(−1,−1,+1)



Introduction Two dimensions Three dimensions Schläfli symbol Four dimensions Five and more dimensions

{p, q} = {3, 5}
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Icosahedron

{p, q} = {3, 5}
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Icosahedron

{p, q} = {3, 5}

(0,±τ,±1)
(±1, 0,±τ)
(±τ,±1, 0)

where

τ =
1 +

√
5

2
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{p, q} = {5, 3}
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Dodecahedron

{p, q} = {5, 3}
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Dodecahedron

{p, q} = {5, 3}

(±1,±1,±1)
(0,±τ,± 1

τ )
(± 1

τ , 0,±τ)
(±τ,± 1

τ , 0)
where

τ =
1 +

√
5

2



Introduction Two dimensions Three dimensions Schläfli symbol Four dimensions Five and more dimensions

Five Platonic solids

Cube

84, 3<
Tetrahedron

83, 3<
Icosahedron

83, 5<

Octahedron

83, 4<
Dodecahedron

85, 3<
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Schläfli symbol

86< 83, 4<

Desired properties of a Schläfli symbol of a regular polytope Πn

1 Schläfli symbol is an ordered set of n− 1 natural numbers
2 If Πn has Schläfli symbol {k1, k2 . . . , kn−1}, then its

Facets have Schläfli symbol {k1, k2 . . . , kn−2}.
Vertex figures have Schläfli symbol {k2, k3 . . . , kn−1}.
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Schläfli symbol

86< 83, 4<
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Schläfli symbol

Claim

Vertex figure of a facet is a facet of a vertex figure.

If Π4 is a regular polytope, then it has

3-dimensional facets {p, q}
3-dimensional vertex figures {v, r}

We define the Schläfli symbol of Π4 to be {p, q, r}.

In general if Πn is a regular polytope, then it has

facets {k1, k2, . . . , kn−2}
vertex figures {k2, . . . , kn−2, kn−1}

Thus the Schläfli symbol of Πn is {k1, k2, . . . , kn−1}.
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Introduction Two dimensions Three dimensions Schläfli symbol Four dimensions Five and more dimensions

Regular 4-dimensional polytopes

Regular polyhedrons

{3, 3}, {3, 4}, {3, 5}, {4, 3}, {5, 3}

By superimposing we can form the following Schläfli symbols:

{3, 3, 3}, {3, 3, 4}, {3, 3, 5}
{3, 4, 3}
{3, 5, 3}

{4, 3, 3}, {4, 3, 4}, {4, 3, 5}
{5, 3, 3}, {5, 3, 4}, {5, 3, 5}
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Regular 5-dimensional polytopes

Six regular 4-dimensional polytopes

{3, 3, 3}, {3, 3, 4}, {3, 3, 5}, {3, 4, 3}, {4, 3, 3}, {5, 3, 3}

By superimposing we can form the following Schläfli symbols:

{3, 3, 3, 3}, {3, 3, 3, 4}, {3, 3, 3, 5}
{3, 3, 4, 3}
{3, 4, 3, 3}

{4, 3, 3, 3}, {4, 3, 3, 4}, {4, 3, 3, 5}
{5, 3, 3, 3}, {5, 3, 3, 4}, {5, 3, 3, 5}
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Introduction Two dimensions Three dimensions Schläfli symbol Four dimensions Five and more dimensions

Regular 5-dimensional polytopes

Six regular 4-dimensional polytopes

{3, 3, 3}, {3, 3, 4}, {3, 3, 5}, {3, 4, 3}, {4, 3, 3}, {5, 3, 3}

By superimposing we can form the following Schläfli symbols:
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Three regular 5-dimensional polytopes

{3, 3, 3, 3}, {3, 3, 3, 4}, {4, 3, 3, 3}

Proceeding in the same manner we can form the following Schläfli
symbols:

αn = {3, 3, . . . , 3, 3} = {3n−1} Simplex

βn = {3, 3, . . . , 3, 4} = {3n−2, 4} Cross polytope

γn = {4, 3, . . . , 3, 3} = {4, 3n−2} Hypercube

We can also get {4, 3, . . . , 3, 4} = {4, 3n−3, 4}, but it turns out to
be a honeycomb.
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βn = {3, 3, . . . , 3, 4} = {3n−2, 4} Cross polytope

γn = {4, 3, . . . , 3, 3} = {4, 3n−2} Hypercube

We can also get {4, 3, . . . , 3, 4} = {4, 3n−3, 4}, but it turns out to
be a honeycomb.
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Summary

Dimension 1 2 3 4 ≥ 5
Number of polytopes 1 ∞ 5 6 3
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